[bookmark: system_design_learning_roadmap]System Design Learning Roadmap
Complete chronological guide from fundamentals to advanced topics with checkboxes for tracking progress.

[bookmark: bm_1_fundamentals_prerequisites]1. Fundamentals & Prerequisites
☐ Core System Design Concepts
☐ What is System Design and why it matters
☐ Goals of System Design (scalability, reliability, maintainability, efficiency)
☐ Scope and constraints of system design
☐ Soft skills in system design interviews (communication, asking clarifying questions)
☐ Functional vs Non-Functional Requirements (FRs and NFRs)
☐ Identifying functional requirements
☐ Understanding non-functional requirements
☐ SLAs, SLOs, and error budgets
☐ Latency, throughput, and availability metrics
☐ Basic Estimation & Calculations
☐ Back-of-envelope calculations
☐ Estimating users and concurrent connections
☐ Request per second (RPS) calculations
☐ Bandwidth and storage requirements
☐ Memory calculations and cache sizing

[bookmark: bm_2_networking_communication_fun_b0978b]2. Networking & Communication Fundamentals
☐ Networking Essentials
☐ OSI model basics
☐ TCP/IP protocol suite
☐ HTTP/HTTPS and DNS
☐ Ports and sockets
☐ Connection pooling
☐ Communication Protocols in System Design
☐ REST architecture and conventions
☐ GraphQL fundamentals
☐ gRPC and Protocol Buffers
☐ WebSockets for real-time communication
☐ Server-Sent Events (SSE)
☐ API Design Principles
☐ RESTful API design best practices
☐ API versioning strategies
☐ Pagination and filtering
☐ Error handling and status codes
☐ Rate limiting and throttling
☐ API documentation and contracts

[bookmark: bm_3_database_design_fundamentals]3. Database Design Fundamentals
☐ Relational Databases (SQL)
☐ ACID properties and transactions
☐ Normalization and denormalization
☐ Indexing strategies (B-trees, hash indexes)
☐ Query optimization
☐ Popular systems: PostgreSQL, MySQL, Oracle
☐ NoSQL Databases
☐ Types of NoSQL databases (Document, Key-Value, Column-Family, Graph)
☐ When to use NoSQL over SQL
☐ Document databases: MongoDB, DynamoDB
☐ Key-value stores: Redis, Memcached
☐ Column-family stores: Cassandra, HBase
☐ Graph databases: Neo4j
☐ Database Replication & Redundancy
☐ Master-slave replication
☐ Master-master replication
☐ Read replicas and their benefits
☐ Failover mechanisms
☐ Data Partitioning Strategies
☐ Horizontal partitioning (sharding) fundamentals
☐ Sharding keys and distribution strategies
☐ Consistent hashing for distributed sharding
☐ Handling hot partitions

[bookmark: bm_4_caching_and_performance_opti_d14126]4. Caching and Performance Optimization
☐ Caching Fundamentals
☐ Cache invalidation strategies (TTL, LRU, LFU)
☐ Cache-aside pattern
☐ Write-through vs Write-behind caching
☐ Cache stampede and solutions
☐ Caching Systems & Technologies
☐ Redis: data structures and use cases
☐ Memcached and its limitations
☐ Distributed caching challenges
☐ Cache warming strategies
☐ Content Delivery Networks (CDNs)
☐ CDN architecture and benefits
☐ Edge servers and latency reduction
☐ Cache invalidation on CDNs
☐ Popular CDNs: CloudFlare, CloudFront, Akamai

[bookmark: bm_5_load_balancing_high_availability]5. Load Balancing & High Availability
☐ Load Balancer Fundamentals
☐ Purpose and benefits of load balancers
☐ Layer 4 (transport) vs Layer 7 (application) load balancing
☐ Load balancing algorithms (Round-robin, Least connections, IP hash)
☐ Sticky sessions and session affinity
☐ Scaling Strategies
☐ Horizontal scaling (adding more machines)
☐ Vertical scaling (increasing machine capacity)
☐ Auto-scaling policies and metrics
☐ Stateless vs Stateful services
☐ Availability & Reliability
☐ Redundancy patterns
☐ Active-active vs active-passive architectures
☐ Health checks and heartbeats
☐ Circuit breaker pattern
☐ Bulkhead pattern for isolation

[bookmark: bm_6_distributed_systems_foundations]6. Distributed Systems Foundations
☐ CAP Theorem
☐ Consistency, Availability, Partition tolerance
☐ Understanding trade-offs
☐ Real-world implications for system design
☐ Consistency Models
☐ Strong consistency
☐ Eventual consistency
☐ Weak consistency
☐ Read-after-write consistency
☐ Distributed System Challenges
☐ Network partitions and failures
☐ Clock synchronization issues
☐ Byzantine failures
☐ Distributed transactions and ACID
☐ Consensus Algorithms
☐ Paxos algorithm overview
☐ Raft consensus algorithm
☐ Practical Byzantine Fault Tolerance (PBFT)
☐ Leader election mechanisms

[bookmark: bm_7_message_queues_asynchronous_84275b]7. Message Queues & Asynchronous Processing
☐ Message Queue Fundamentals
☐ Producer-consumer pattern
☐ Point-to-point vs publish-subscribe messaging
☐ Message ordering and guarantees
☐ At-least-once, at-most-once, exactly-once delivery
☐ Message Queue Technologies
☐ RabbitMQ architecture and patterns
☐ Apache Kafka: topics, partitions, consumer groups
☐ Redis streams
☐ AWS SQS and SNS
☐ Asynchronous System Design
☐ Decoupling with message queues
☐ Handling backpressure
☐ Dead letter queues and error handling
☐ Idempotency in async systems

[bookmark: bm_8_architectural_patterns]8. Architectural Patterns
☐ Monolithic Architecture
☐ Structure and components
☐ Advantages and limitations
☐ Deployment strategies
☐ Microservices Architecture
☐ Principles of microservices
☐ Service boundaries and domain-driven design
☐ Service discovery mechanisms (Consul, Eureka, Kubernetes DNS)
☐ API Gateway pattern
☐ Service mesh basics (Istio, Linkerd)
☐ Challenges: distributed tracing, debugging, deployment
☐ Event-Driven Architecture
☐ Event sourcing pattern
☐ Command Query Responsibility Segregation (CQRS)
☐ Event streaming platforms
☐ Building reactive systems
☐ Other Patterns
☐ Client-server architecture
☐ Peer-to-peer (P2P) systems
☐ Lambda architecture for big data
☐ Serverless architecture

[bookmark: bm_9_data_processing_storage_at_scale]9. Data Processing & Storage at Scale
☐ File Systems & Object Storage
☐ Distributed file systems (HDFS, GFS)
☐ Object storage (S3, GCS, Azure Blob)
☐ Trade-offs between storage types
☐ Big Data Concepts
☐ MapReduce paradigm
☐ Batch processing (Hadoop, Spark)
☐ Stream processing (Spark Streaming, Kafka Streams)
☐ Data warehousing (Snowflake, BigQuery)
☐ Data lakes and their architecture
☐ Search & Indexing
☐ Full-text search engines (Elasticsearch, Solr)
☐ Inverted indexes
☐ Search relevance and ranking

[bookmark: bm_10_security_in_system_design]10. Security in System Design
☐ Authentication & Authorization
☐ Difference between authentication and authorization
☐ Passwords, tokens, and OAuth 2.0
☐ Single Sign-On (SSO) and SAML
☐ JWT tokens and session management
☐ Multi-factor authentication (MFA)
☐ Data Security
☐ Encryption at rest and in transit
☐ Symmetric vs asymmetric encryption
☐ Key management and rotation
☐ SSL/TLS certificates
☐ Hashing and salting passwords
☐ Network Security
☐ Firewalls and access control lists
☐ VPNs and tunneling
☐ DDoS protection and mitigation
☐ Rate limiting and API throttling
☐ API Security
☐ CORS and CSRF protection
☐ SQL injection and XSS prevention
☐ API authentication methods
☐ Secure API versioning

[bookmark: bm_11_monitoring_observability_devops]11. Monitoring, Observability & DevOps
☐ Monitoring & Alerting
☐ Key metrics to monitor (CPU, memory, disk, network)
☐ Application-level metrics
☐ Alerting strategies and thresholds
☐ Popular tools: Prometheus, Grafana, Datadog
☐ Observability & Logging
☐ Structured logging best practices
☐ Log aggregation (ELK stack, Splunk)
☐ Distributed tracing (Jaeger, Zipkin)
☐ Performance profiling and debugging
☐ Continuous Integration & Deployment (CI/CD)
☐ CI/CD pipeline design
☐ Automated testing (unit, integration, end-to-end)
☐ Deployment strategies (Blue-green, Canary, Rolling)
☐ Tools: Jenkins, GitLab CI, GitHub Actions
☐ Containerization & Orchestration
☐ Docker fundamentals and containerization
☐ Kubernetes basics and orchestration
☐ Container registries and image management
☐ Helm charts and deployment automation

[bookmark: bm_12_low_level_design_lld_code_p_731b37]12. Low-Level Design (LLD) & Code Principles
☐ Object-Oriented Programming (OOP)
☐ Encapsulation, inheritance, polymorphism
☐ Abstraction and interfaces
☐ Method overloading and overriding
☐ Access modifiers and visibility
☐ SOLID Principles
☐ Single Responsibility Principle (SRP)
☐ Open/Closed Principle (OCP)
☐ Liskov Substitution Principle (LSP)
☐ Interface Segregation Principle (ISP)
☐ Dependency Inversion Principle (DIP)
☐ Design Patterns
☐ Creational patterns (Singleton, Factory, Builder)
☐ Structural patterns (Adapter, Decorator, Facade)
☐ Behavioral patterns (Observer, Strategy, State)
☐ Architectural patterns (MVC, MVVM)
☐ Code Optimization Techniques
☐ Time and space complexity analysis
☐ Algorithm optimization
☐ Memory management and garbage collection
☐ Concurrency and parallelization basics

[bookmark: bm_13_testing_quality_assurance]13. Testing & Quality Assurance
☐ Testing Strategies
☐ Unit testing and test-driven development (TDD)
☐ Integration testing
☐ End-to-end (E2E) testing
☐ Performance and load testing
☐ Security testing and penetration testing
☐ Testing Tools & Frameworks
☐ Testing frameworks (JUnit, pytest, Jest)
☐ Mocking libraries (Mockito, Jest mocks)
☐ Load testing tools (JMeter, Locust, k6)
☐ Test coverage and metrics
☐ Quality Assurance
☐ Code reviews and best practices
☐ Static code analysis tools
☐ Technical debt management
☐ Documentation standards

[bookmark: bm_14_high_level_design_hld_techniques]14. High-Level Design (HLD) Techniques
☐ Designing for Scalability
☐ Identifying scalability bottlenecks
☐ Vertical vs horizontal scaling trade-offs
☐ Database scaling strategies
☐ Application-level scaling patterns
☐ Capacity planning and resource estimation
☐ Designing for High Availability
☐ Redundancy at all levels
☐ Failover and failback mechanisms
☐ Geographic distribution and disaster recovery
☐ Recovery Time Objective (RTO) and Recovery Point Objective (RPO)
☐ Backup strategies and data integrity
☐ Designing for Performance
☐ Latency optimization strategies
☐ Throughput improvement techniques
☐ Resource utilization and cost optimization
☐ Performance trade-offs and budgeting

[bookmark: bm_15_system_design_patterns_real_3a178b]15. System Design Patterns & Real-World Applications
☐ Common Design Patterns
☐ Rate limiting and throttling patterns
☐ Retry logic and exponential backoff
☐ Timeout and circuit breaker patterns
☐ Bulkhead and isolation patterns
☐ Cache-aside and write-through patterns
☐ Anti-Patterns to Avoid
☐ Monolithic bottlenecks
☐ Over-optimization and premature scaling
☐ Tight coupling and poor separation of concerns
☐ Ignoring operational concerns
☐ Case Studies & Applications
☐ URL shortener (Bit.ly-like systems)
☐ Social media platform (Twitter/X-like systems)
☐ E-commerce platform (Amazon-like systems)
☐ Video streaming platform (Netflix-like systems)
☐ Real-time messaging system (WhatsApp-like systems)
☐ Ride-sharing service (Uber-like systems)
☐ Search engine (Google-like systems)
☐ File storage system (Dropbox-like systems)

[bookmark: bm_16_advanced_topics_specializations]16. Advanced Topics & Specializations
☐ Machine Learning Systems Design
☐ ML pipelines and data engineering
☐ Model training and serving infrastructure
☐ Feature engineering and preprocessing at scale
☐ Model monitoring and retraining strategies
☐ MLOps and deployment automation
☐ Real-Time Systems
☐ Real-time data processing architectures
☐ Stream processing frameworks
☐ Windowing and aggregations
☐ Latency guarantees and SLAs
☐ Advanced Distributed Systems
☐ Vector clocks and causality tracking
☐ Distributed locking mechanisms
☐ Two-phase commit and saga patterns
☐ Distributed tracing and observability at scale
☐ Cloud Platform Specifics
☐ AWS services and architecture (EC2, RDS, S3, Lambda)
☐ Google Cloud Platform (GCP) offerings
☐ Azure services and ecosystems
☐ Multi-cloud and hybrid architectures
☐ Performance & Cost Optimization
☐ Infrastructure cost optimization
☐ Reserved instances and spot instances
☐ Database optimization and query tuning
☐ Caching strategies for cost reduction

[bookmark: bm_17_interview_preparation_soft_skills]17. Interview Preparation & Soft Skills
☐ Interview Preparation
☐ Understanding problem statements and requirements
☐ Time management during design discussions
☐ Presenting trade-offs and justifying decisions
☐ Handling follow-up questions and pivoting designs
☐ Communicating complex ideas clearly
☐ Communication & Collaboration
☐ Clarifying ambiguous requirements
☐ Asking the right questions
☐ Explaining technical concepts to non-technical stakeholders
☐ Receiving and incorporating feedback
☐ Practical Interview Scenarios
☐ Design Twitter/X feed system
☐ Design Instagram photo sharing
☐ Design YouTube/video platform
☐ Design Uber/ride-sharing
☐ Design Airbnb/booking system
☐ Design Discord/chat system
☐ Design TikTok/content platform
☐ Design booking/payment systems

[bookmark: notes_for_success]Notes for Success
· Depth over Breadth: Understand concepts deeply rather than skimming surfaces
· Practice Design: Regularly practice designing systems independently or with peers
· Stay Current: Follow tech blogs, system design articles, and case studies from companies
· Implement: Build small projects applying these concepts
· Discuss: Join communities and discuss designs with other engineers
· Iterate: Revisit previous topics as you learn new concepts for better understanding

[bookmark: learning_path_recommendations]Learning Path Recommendations
[bookmark: phase_1_foundations_weeks_1_4]Phase 1: Foundations (Weeks 1-4)
Focus on sections 1-3 to build core knowledge of system design fundamentals, networking basics, and database concepts. Complete hands-on database exercises.
[bookmark: phase_2_core_distributed_systems_81ac34]Phase 2: Core Distributed Systems (Weeks 5-8)
Master sections 4-7 covering caching, load balancing, distributed systems theory, and message queues. Build a small project using message queues.
[bookmark: phase_3_architecture_design_weeks_9_12]Phase 3: Architecture & Design (Weeks 9-12)
Deep dive into sections 8-11 understanding architectural patterns, data processing, security, and operational concerns. Implement a microservices prototype.
[bookmark: phase_4_practical_skills_weeks_13_16]Phase 4: Practical Skills (Weeks 13-16)
Complete sections 12-14 on LLD principles, testing, and HLD techniques. Practice designing systems with mock interviews.
[bookmark: phase_5_advanced_interview_prep_weeks_17]Phase 5: Advanced & Interview Prep (Weeks 17+)
Sections 15-17 focusing on real-world patterns, advanced topics, and interview-specific scenarios. Complete 2-3 full system design mock interviews weekly.

Created: January 2026 | Portrait Format | Printable System Design Roadmap
